Drug repurposing: mining protozoan proteomes for targets of known bioactive compounds
نویسندگان
چکیده
OBJECTIVE To identify potential opportunities for drug repurposing by developing an automated approach to pre-screen the predicted proteomes of any organism against databases of known drug targets using only freely available resources. MATERIALS AND METHODS We employed a combination of Ruby scripts that leverage data from the DrugBank and ChEMBL databases, MySQL, and BLAST to predict potential drugs and their targets from 13 published genomes. Results from a previous cell-based screen to identify inhibitors of Cryptosporidium parvum growth were used to validate our in-silico prediction method. RESULTS In-vitro validation of these results, using a cell-based C parvum growth assay, showed that the predicted inhibitors were significantly more likely than expected by chance to have confirmed activity, with 8.9-15.6% of predicted inhibitors confirmed depending on the drug target database used. This method was then used to predict inhibitors for the following 13 disease-causing protozoan parasites, including: C parvum, Entamoeba histolytica, Giardia intestinalis, Leishmania braziliensis, Leishmania donovani, Leishmania major, Naegleria gruberi (in proxy of Naegleria fowleri), Plasmodium falciparum, Plasmodium vivax, Toxoplasma gondii, Trichomonas vaginalis, Trypanosoma brucei and Trypanosoma cruzi. CONCLUSIONS Although proteome-wide screens for drug targets have disadvantages, in-silico methods can be developed that are fast, broad, inexpensive, and effective. In-vitro validation of our results for C parvum indicate that the method presented here can be used to construct a library for more directed small molecule screening, or pipelined into structural modeling and docking programs to facilitate target-based drug development.
منابع مشابه
Anti-Infectious Drug Repurposing Using an Integrated Chemical Genomics and Structural Systems Biology Approach
The emergence of multi-drug and extensive drug resistance of microbes to antibiotics poses a great threat to human health. Although drug repurposing is a promising solution for accelerating the drug development process, its application to anti-infectious drug discovery is limited by the scope of existing phenotype-, ligand-, or target-based methods. In this paper we introduce a new computationa...
متن کاملSilent clusters – speak up!
Microorganisms have provided mankind with a multitude of useful compounds ranging from industrial enzymes to anti-cancer compounds and antibiotics. With the aging population, our need for treatment principles against cancer, Alzheimer's disease and metabolic disorders is increasing. Also, the occurrence and spread of antibiotic resistance in pathogenic microorganisms has become one of our main ...
متن کاملDrug Repositioning in the Mirror of Patenting: Surveying and Mining Uncharted Territory
Drug repositioning—the investigation, development and use of active pharmaceutical ingredients for a therapeutic class that is different from the original one—is much more than a “recycling” of known drugs or drug candidates (Oprea and Mestres, 2012). Quite the opposite, it creates novel insights that are of additional scientific and public health interest. Exploiting the fact that very few com...
متن کاملA Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases
Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, ...
متن کاملDrug repurposing and human parasitic protozoan diseases
Parasitic diseases have an enormous health, social and economic impact and are a particular problem in tropical regions of the world. Diseases caused by protozoa and helminths, such as malaria and schistosomiasis, are the cause of most parasite related morbidity and mortality, with an estimated 1.1 million combined deaths annually. The global burden of these diseases is exacerbated by the lack ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Medical Informatics Association : JAMIA
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2014